С.А.Куценко. ОСНОВЫ ТОКСИКОЛОГИИ

ГЛАВА 4.3. РАСПРЕДЕЛЕНИЕ КСЕНОБИОТИКОВ В ОРГАНИЗМЕ


3. Связывание с белками крови

Токсикант, попавший в кровоток, может вступать во взаимодействие с белками и клетками крови, при этом изменяются его токсикокинетические характеристики. В практическом отношении особый интерес представляет взаимодействие ксенобиотиков с протеинами плазмы крови.

3.1. Белки плазмы крови

Плазма крови человека содержит около 75 мг/мл белка. Основная масса представлена альбуминами: 35 - 55 мг/мл, выполняющими, главным образом, транспортные функции. К числу других групп относятся белки свертывающей системы крови, иммуноглобулины, белки системы комплемента, ингибиторы протеолиза, липо- и гликопротеины. Взаимодействие этих белков с ксенобиотиками приводит к понижению концентрации свободно циркулирующих в плазме веществ, вследствие чего понижается фракция токсиканта, способного к диффузии в ткани. Липофильные вещества, взаимодействуют в основном с липопротеинами. Водо-растворимые токсиканты прежде всего связываются с альбуминами и кислыми http://www.medline.ru/public/monografy/toxicology/p4-toxicokinetics/sym/alpha.gif 1-гликопротеидами. Концентрация последних в плазме крови составляет около 0,9 мг/мл. Потенциальные участки связывания заряженных молекул ксенобиотиков белками представлены в таблице 4.

Таблица 4. Потенциальные участки связывания ионизированных молекул ксенобиотиков белками

Участки связывания
(аминокислота)

Строение групп

Число участков связывание на молекулу белка

Аспартат, глутамат

-СООН

101

Тирозин

-

18

Цистеин

-S-

0,7

Гистидин

-NH+-

17

Лизин

-NH3+

57

Аргинин

=NH2

22

Терминальные группы

-NH3
-COO-

1
1

Tanford et al. 1955

Альбумины плазмы крови человека хорошо растворяются в воде. Их молекулярная масса - около 66000 Д. Они состоят из 585 остатков аминокислот. Третичная структура альбуминов фиксируется 17 дисульфидными связями. При рН 7,4 эти белки находятся в форме анионов. Большинство попавших в кровь веществ фиксируются на альбуминах, не зависимо от того являются они нейтральными, кислыми или основными соединениями.

Выделяют 6 основных центров связывания ксенобиотиков на молекуле альбумина. Различные центры отличаются друг от друга неодинаковым сродством к веществам с различными значениями константы рКа, механизмами взаимодействия с ксенобиотиками, различной кривой насыщения связи, числом на молекуле белка, величинами константы диссоциации комплекса белок-ксенобиотик. Так, центр связывания 1-го типа содержит два различных акцепторных ареала. Здесь связываются такие вещества как варфарин, бензодиазепины. На 1 молекулу альбумина приходится 1 - 3 центра связывания 1-го типа.

Физиологическая функция альбуминов состоит в связывании свободных жирных кислот и билирубина, циркулирующих в крови. Эти вещества могут влиять на процесс взаимодействия белков с ксенобиотиками. Так, жирные кислоты ослабляют связывание гликозидов или бензодиазепинов с альбуминами. Билирубин влияет на фиксацию варфарина и т.д.

Кислые http://www.medline.ru/public/monografy/toxicology/p4-toxicokinetics/sym/alpha.gif 1-гликопротеиды состоят из одной полипептидной цепи и остатка углевода. Молекулярная масса белков - около 41000. Полисахаридный фрагмент молекулы составляет около 38% ее массы. Гликопротеиды связывают, прежде всего, молекулы, обладающие свойствами слабых оснований. Из-за невысокой концентрации этих белков в плазме процесс связывания ими химических веществ быстро насыщается.

Липопротеиды прежде всего связывают жирорастворимые вещества. Основной центр связывания - липидный фрагмент молекулы.

Кроме указанных, в плазме крови содержатся специфические транспортные белки, активно связывающие некоторые токсиканты (церулоплазмин, металотионеины и т.д.).

3.2. Характеристики связывания ксенобиотиков

Перечень связывающихся на белках крови молекул простирается от простых неорганических до сложных макромолекулярных соединений. Достаточно хорошо это явление изучено применительно к разнообразным лекарственным препаратам (таблица 5).

Таблица 5. Связывание некоторых лекарственных препаратов белками плазмы крови

Вещество

Связывание (%)

Вещество

Связывание (%)

Трамал
Соталол
Метопролол
Кодеин
Морфин
Амидопирин
Кофеин
Дигоксин
Теофиллин
Резерпин
Атропин
Фенобарбитал
Клофилин
Димедрол
Пиндолол
Сульфален

5
5
12
7 - 25
20 -35
25 - 30
35
20 - 40
40
40
50
50
55
40 - 70
40 - 70
65 - 80

Дезипрамин
Доксепин
Окспренолол
Анаприлин
Метадон
Галоперидол
Аминазин
Дифенин
Сулфадиметоксин
Хлорпротиксен
Амитриптилин
Дигитоксин
Бутадион
Пироксикам
Тиоридазин

70 - 90
80
80
90
90
90
90
87 - 95
90 - 99
95 - 98
91 - 97
95
99
99
99,5

( цит. по Марковой И.В., 1998)

Связь веществ с белками - спонтанно протекающая реакция, не требующая затрат энергии и зависящая только от их строения.

В основе процесса, как правило, лежит установление гидрофобных, реже ионных и водородных, связей между участниками взаимодействия. Установлено, что с увеличением молекулярной массы ксенобиотика, длины алкильных радикалов в молекуле вероятность его связывания белками возрастает. Включение в молекулу галогенов делает связь вещество-белок более прочной. Влияние различных заместителей возрастает в ряду: Cl< Br< J. Наличие N-ацильных радикалов в молекуле также упрочивает связь. Галогенированные углеводороды прочно связываются с альбуминами, но еще прочнее с липопротеинами. Липофильные ФОС связываются и с альбуминами и с липопротеинами (таблица 6).

Таблица 6. Связывание ксенобиотиков различного строения с альбуминами и липопротеинами

Токсикант

Количество связавшегося вещества (%)

Связано альбумином (%)

Связано ЛПНП* (%)

Связано ЛПВП** (%)

ДДТ
Диэлдрин
Линдан
Паратион
Диазинон
Карбарил
Карбофуран
Альдикарб
Никотин

99,9
99,9
98,0
98,7
96,6
97,4
73,6
30,0
25,0

35
12
37
67
55
99
97
94
94

35
50
38
21
31
< 1
1
2
2

30
38
25
12
14
< 1
2
4
4

* ЛПНП - липопротеины низкой плотности

**ЛПВП - липопротеины высокой плотности

(Malwall B.P., Guthrie F.E., 1981)

Связывание с белками - один из важных факторов, определяющих особенности токсикокинетики некоторых металлов. Ключевую роль здесь играют низкомолекулярные, содержащие SH-группы металлсвязывающие белки - металлотионеины, усиленно синтезируемые в ответ на поступление целого ряда металлов (Сd, Zn и т.д.) в организм. Эти белки активно соединяются с металлами, формируя ковалентную связь, и при острых воздействиях снижают их токсичность. Так, предварительное введение экспериментальным животным цинка, индуцирующего синтез металлотионеинов, защищает их от смертельной дозы Сd (Gunn et al., 1964). Печень и почки - органы, в которых синтез металлотионеинов проходит с наивысшей скоростью. Именно в этих органах первоначально накапливается и большая часть металла, поступившего в организм. При длительном поступлении в организм (хорошо изучено на примере кадмия) комплекс металл-металлотионеин появляется в крови. Источником циркулирующего в крови комплекса, как полагают, является печень. Интересно отметить, что накопление связанного кадмия в почках в большом количестве приводит к развитию нефропатии. Комплекс Сd-металлотионеин при системном введении экспериментальным животным вызывает некроз клеток эпителия проксимального отдела почечных канальцев. Вероятно, в этих структурах происходит захват циркулирующего в крови Сd-металлотионеина. У грызунов, которым хронически вводили Сd, нефропатия не развивалась до тех пор, пока концентрация комплекса Сd-металлотионеин в сыворотке крови не становилась достаточно высокой.

3.3. Конкурентные отношения при взаимодействии ксенобиотиков с белками

Если в растворе белка находится несколько химических соединений, между ними могут возникнуть конкурентные отношения за образование связи с протеинами. Эту закономерность легко проследить на примере сульфониламидных препаратов и фенобарбитала. При увеличении концентрации барбитурата (с 0,85 мМ до 3, 25 мМ) количество сульфониламида, связавшегося с альбумином плазмы крови человека уменьшается. Подобные отношения отмечаются между веществами как близкого, так и совершенно разного строения, вместе с тем не являются облигатными для всех соединений. Более того, в ряде случаев выявляется усиление связи веществ с протеинами в присутствии других соединений. Так, галотан повышает способность альбумина связывать самые различные химические вещества, вероятно модифицируя его конформацию.

Известна способность веществ к взаимному вытеснению из связей с протеинами. Это особенно характерно для слабых кислот, например таких лекарственных препаратов, как фенилбутазон, сульфинпиразон и т.д. Вследствие высвобождения из связи с белком концентрация действующего соединения в плазме крови возрастает.

Значение рассматриваемого явления определяется следующими факторами:

- относительным сродством вещества и его конкурента к белкам плазмы крови с одной стороны, и тканям - с другой;

- объемами, в которых распределяются вещества;

- скоростью разрушения комплекса токсикант-белок.

Если объем распределения вещества невелик и при этом в плазме крови обнаруживается его высокая концентрация в сравнении с тканями, то вытеснение из связи с белками крови заметно изменит содержание соединения в тканях. Для веществ с большим объемом распределения вытеснение практически не скажется на характере распределения в организме.

При попадании в кровь нескольких биологически активных веществ, конкурирующих за один и тот же участок связывания на белках плазмы крови, возможна существенная модификация их токсичности и продолжительности действия. Так, при введении экспериментальным животным фенилбутазона или его производных, на фоне предварительного введения переносимой дозы антикоагулянтов (варфарина, кумарина), отмечается вытеснение последних из связи с белками плазмы крови, что приводит к гибели животных.

При изучении явления конкуренции веществ необходимо учитывать, что ксенобиотики помимо связи с белками плазмы крови, как правило, образуют комплексы и с тканевыми протеинами (таблица 7).

Таблица 7. Связывание веществ (0,1 М) in vitro 50% гомогенатом мышечной ткани, 25% раствором гемоглобина и плазмой крови человека

Соединения

Связывание (%)

Мышцы

Гемоглобин

Плазма

Салициловая кислота
Нитрофурантион
Гексобарбитал
Сульфадиметоксин
Фенобарбитал
Тиопентал
Фенилбутазон
Фенитоин
Хлордиазепоксид
Прометазин
Дезипрамин

43,3
58,4
60,5
73,2
66,9
90,0
90,1
88,3
88,8
96,8
98,4

50,4
41,0
40,2
60,3
56,6
78,2
78,2
79,4
75,5
90,7
86,3

82,1
77,1
54,8
97,5
50,7
87,2
98,8
85,8
97,8
82,7
81,2

(H. Kurz, 1978)

Введение в организм конкурентов связывания может привести к высвобождению соединения не только из комплекса с белками плазмы, но и тканей. В этом случае диффузионный градиент высвобождаемого вещества может измениться самым неожиданным образом (таблица 8).

Таблица 8. Изменение количества связанного веществ (0,1 мМ) при добавлении в инкубат фенилбутазона (0,1 мМ)

Вещество/белок*

Без фенилбутазона (%)

В присутствии фенилбутазона (%)

Фенпрокурон
плазма (М)**
гемоглобин (М)
мышцы (К)**
Тиопентал
плазма (М)
гемоглобин (М)
мышцы (К)
Толбутамид
плазма (М)
гемоглобин (М)
мышцы (К)


99,0
87,5
66,1

86,4
74,4
66,0

96,2
48,6
29,6


81,0
85,7
62,7

83,1
71,4
67,0

94,9
39,4
28,7

* 25% раствор гемоглобина; 50% гомогенат мышечной ткани

** М - человек; К - кролик. (Н.Kurz, 1978)

3.4. Биологические последствия связывания токсиканта белками плазмы крови

Связывание веществ белками крови имеет определенные токсикокинетические и токсикодинамические последствия.

1. Распределение. Простые вещества, связанные с белками крови, приобретают кинетические характеристики этих белков. Содержание таких веществ в тканях, как правило, невелико, объем распределения - мал (плазма крови). Напротив, у веществ, плохо связывающихся с белками, объем распределения и содержание в тканях высокие. Если распределение вещества в организме не подчиняется законам диффузии и осуществляется путем активной его экстракции из крови тканями (например, печенью или почками), то связывание белками может даже способствовать активному захвату такого ксенобиотика (например, захват почками комплекса кадмия с металлотионеинами).

2. Клиаренс. Клиаренс (скорость "очищения" плазмы - Cl) определяется интенсивностью кровотока (F) и скоростью экстракции вещества органами выведения (Е):

Cl = F E;

Е = (СА - СV)/CА , где

СА и СV - концентрация вещества в артериальной и венозной крови соответственно.

Если Е имеет высокие значения (более 0,7 - 0,8), клиаренс в значительной степени зависит от интенсивности кровотока. При этом, соотношение между свободной и связанной фракциями токсиканта в крови играет подчиненную роль. Так, даже если в печени и почках из плазмы экстрагируются преимущественно несвязанная форма, то, вероятно, быстрая диссоциация комплекса вещество-белок приводит к практически незатрудненному выведению вещества.

Если Е - менее 0,2 - 0,3, клиаренс определяется, прежде всего, концентрацией несвязанного вещества в плазме крови. Интенсивность кровотока имеет меньшее значение.

3. Выведение через почки. Если вещество не подлежит активному захвату почечной тканью, то в случае связывания с белками его экскреция будет затруднена, поскольку капиллярная мембрана почечных клубочков не проницаема для белка. В первичную мочу путем фильтрации будут поступать лишь свободные молекулы.

В этой связи если диссоциация комплекса вещество-белок проходит быстро, то связывание ксенобиотика протеинами крови мало сказывается на его выделении через почки, если же образовалась прочная связь, это может стать лимитирующим фактором почечной экскреции.

4. Биологическое действие. Биологическое действие вещества пропорционально части молекул, вступивших во взаимодействие с биологически значимыми молекулами-мишенями. Эта часть, в свою очередь является функцией концентрации свободных, не связавшихся с биосубстратом, молекул. Все структурные элементы организма, способные образовывать комплексы с ксенобиотиками, являются конкурентами специфических рецепторов для токсикантов, понижают их биологическую активность. Это в полной мере относится к белкам крови и тканей. Последние существенно превосходят белки крови по способности неспецифически связывать ксенобиотики и потому в большей степени влияют на токсикодинамические характеристики веществ.

5. Аллергизация. Некоторые ксенобиотики, образуя ковалентные связи с молекулами белков, изменяют структуру протеинов и их конформацию, белки приобретают свойства антигенов для собственного организма. С учетом этих представлений обсуждается возможность объяснения аллергизации организма низкомолекулярными соединениями, наблюдаемая при их повторном воздействии (см. раздел "Иммунотоксичность").