С.А.Куценко. ОСНОВЫ ТОКСИКОЛОГИИ

ГЛАВА 4.3. РАСПРЕДЕЛЕНИЕ КСЕНОБИОТИКОВ В ОРГАНИЗМЕ


5. Проникновение ксенобиотиков в ЦНС

Проникновение в ЦНС целого ряда химических соединений, в основном водорастворимых и тем более заряженных, затруднено или даже невозможно. Это обусловлено особенностями строения гистогематического барьера между кровью и тканью мозга, носящего здесь название "гематоэнцефалический барьер", и барьера, отделяющего цереброспинальную жидкость от кровяного русла (гематоликворный барьер).

5.1. Гематоэнцефалический и гематоликворный барьеры.

Общая площадь поверхности капилляров мозга велика и составляет в среднем 52 см2/г ткани, причем в различных структурах этот показатель не одинаков. Так, в белом веществе мозга обезьяны площадь капилляров составляет 38 см2/г ткани, а в коре головного мозга - 192 см2/г. Большая площадь контакта сосудистого русла и ткани мозга объясняет почему в мозг быстро проникают жирорастворимые ксенобиотики, для которых эндотелий сосудов, базальная мембрана и мембраны астроцитарной глии не представляют преграды. Вместе с тем перечисленные структуры образуют барьер, который не преодолим для очень многих ксенобиотиков.

Гематоэнцефалический барьер формируется благодаря уникальным особенностям анатомических структур головного мозга.

Во-первых, эндотелий капиллярного русла головного мозга отличается от эндотелия других органов чрезвычайно тесным контактом клеток друг с другом. Эффективный радиус пор капилляров мозга значительно меньше, чем в других тканях и составляет, например, у кролика 0,7 - 0,9 нм. Крупные молекулы не в состоянии проникать через эндотелиальный барьер. Водо-растворимые и заряженные молекулы могут проходить непосредственно через биомембраны и цитоплазму эндотелиальных клеток только в том случае, если имеют малые размеры (CN-). В норме эндотелиальные клетки мозга лишены способности к пиноцитозу. Лишь при некоторых патологических состояниях (гипоксия) в ЦНС в эндотелии образуются пиноцитарные вакуоли, при этом возрастает проницаемость гематоэнцефалического барьера, увеличивается уязвимость мозга для действия токсикантов.

Во-вторых, капилляры мозга плотно окутаны отростками астроцитарной глии. Астроцитарная оболочка препятствует проникновению гидрофильных ксенобиотиков из крови в ткань мозга и их взаимодействию с другими клеточными элементами. В некоторых областях мозга, таких как срединное возвышение гипоталямуса, медиальная преоптичесая область, область четвертого желудочка мозга, астроцитарная оболочка развита сравнительно слабо. В этих регионах возможно проникновение водо-растворимых и даже заряженных молекул токсикантов в ЦНС, но также в ограниченном количестве.

Наконец последней структурой, вносящей вклад в формирование ГЭБ, является базальная мембрана, залегающая между эндотелиальными клетками капилляров и отростками астроцитов. Эта мембрана имеет упорядоченную фибриллярную макропротеидную структуру, обеспечивающую избирательное проникновение в мозг ряда важных для обеспечения его жизнедеятельности молекул (кислород, глюкоза и др.).

Аналогичный барьер окружает периферический отдел нервной системы (гематоневральный барьер). Также как и в ЦНС здесь имеются структуры с повышенной проницаемостью для токсикантов. К числу таких структур относятся корешки дорзальных ганглиев и вегетативные (автономные) ганглии.

Особенностью капиллярного русла мозга является наличие хориоидального сплетения. Это сплетение образуется капиллярами и клетками однослойного кубического эпителия, выстилающего полости желудочков мозга. Хориоидальное сплетение - место образование ликвора, жидкости, заполняющей желудочки мозга. Переход веществ из крови в ликвор определяется проницаемостью стенки капилляра и клеточной мембраны эпителия сплетения (гематоликворный барьер) и в целом затруднен для водо-растворимых и заряженных молекул. В свою очередь обмен веществ между ликвором и тканью мозга ограничивается лишь тонким слоем хорошо проницаемой эпендимы. При объяснении закономерностей распределения веществ в мозге допускают, что жидкость межклеточного пространства и ликвор желудочков мозга представляют собой единое целое. В этой связи концентрация веществ в ликворе принимается равной концентрации в межклеточном пространстве. Это допущение в значительной степени справедливо для водо-растворимых веществ и в меньшей степени - для жирорастворимых. Многие вещества, для которых гематоэнцефалический и гематоликворный барьеры не проницаемы, оказывают действие на ЦНС при их введении в желудочки мозга.

5.1.1. Некоторые свойства гематоэнцефалического и гематоликворного барьеров

Проницаемость ГЭБ для различных веществ оценивают путем их введения в кровь, с последующим определением в динамике концентрации в плазме, ликворе и гомогенате мозга.

Свойства веществ, влияющие на их способность проникать в мозг, по сути, идентичны свойствам, регулирующим проникновение соединений через клеточные мембраны: жирорастворимые соединения легко проникают в мозг, водо-растворимые - плохо; слабые кислоты и основания диффундируют через ГЭБ и ликворный барьер только в неионизированной форме; неионизированные молекулы веществ проникают через барьеры тем лучше, чем выше их коэффициент распределения в системе масло/вода; диффундировать через барьеры может лишь фракция вещества, не связанная с белками плазмы крови. В соответствии с изложенным, жирорастворимые неэлектролиты, например хлорированные углеводороды, спирты, ароматические углеводороды и др., легко проникают через ГЭБ. Напротив, чужеродные органические электролиты, например азотсодержащие основания (алкалоиды, миорелаксанты и т.д.) не проникают в ЦНС.

Необходимые мозгу вещества: субстраты обменных процессов, биорегуляторы (аминокислоты, глюкоза, нуклеотиды и др.), переносятся через ГЭБ с помощью специальных механизмов активного транспорта и проникают в ЦНС не зависимо от химических и физико-химических свойств. Синтетические аналоги этих веществ, при поступлении в кровь, могут либо проникать в ткань мозга с помощью имеющихся механизмов активного транспорта, либо блокировать проникновение в ЦНС естественных метаболитов, конкурируя с ними за механизмы транспорта. И то и другое может стать причиной формирования токсического процесса. Примером таких веществ является http://www.medline.ru/public/monografy/toxicology/p4-toxicokinetics/sym/alpha.gif -метил-m-тирозин. Эта аминокислота активно переносится из плазмы крови в мозг. Здесь путем последовательного декарбоксилирования и гидроксилирования образуется молекула вещества (метараминол), провоцирующего выброс норадреналина из пресинаптических нервных окончаний с развитием соответствующих эффектов. При внутривенном введении метараминола экспериментальным животным центральные эффекты не развиваются, так как вещество, не будучи аминокислотой, не проникает через ГЭБ.

Проницаемость ГЭБ в значительной степени изменяется с возрастом и при различных патологических состояниях (воспалительный процесс, ацидоз). У плода и новорожденных барьер проницаем для токсикантов, не проникающих в мозг взрослого (например ионы свинца при остром отравлении солями металла). При менингите в мозг проникают антибиотики, не проходящие через ГЭБ здорового. В условиях эксперимента проницаемость гематоэнцефалического барьера можно усилить, вводя в кровь гипертонический раствор арабинозы или другие соединения (алкоголь, мочевину, нортриптилин и т.д.).

Вещества, для которых ГЭБ не проницаем, при введении в ликворное пространство (желудочки мозга) проникают в мозговую ткань. Ацетилхолин, адреналин, гистамин, амфетамин, тубокурарин и т.д. при этом способе введения быстро оказывают воздействие на ЦНС. Проникновение веществ из ликвора в мозг осуществляется с ликворным током, противоположным по направлению току жидкости в венозные синусы, формируемые твердой оболочкой мозга.